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Abstract

To succeed, we posit that research cartography will require high-
throughput natural description to identify unknown unknowns
in a particular design space. High-throughput natural descrip-
tion, the systematic collection and annotation of representative
corpora of real-world stimuli, faces logistical challenges, but
these can be overcome by solutions that are deployed in the
later stages of integrative experiment design.

The integrative approach advocated by Almaatouq et al. starts
with mapping a research field onto an n-dimensional design
space that defines the universe of relevant experiments – what
they call “research cartography” (target article, sect. 3.1 para. 2).
They suggest that the design space’s dimensions can be extracted
from available taxonomies, prior experimental research, and prac-
tical experience. However, as they acknowledge, this approach is
vulnerable to unknown unknowns: Taxonomies, prior experi-
ments, and practical experience may all fail to identify important
dimensions which should be included in the design space.

Here, we focus on one way of identifying unknown unknowns:
High-throughput natural description. This approach may help
research cartographers to uncover missing dimensions of the
research design space, at a cost comparable to the later stages of
the integrative experiment design.

To appreciate the value of high-throughput natural descrip-
tion, consider cases where researchers noticed a discrepancy
between the experimental stimuli and the naturalistic variation
of these stimuli. For instance, Schutz and Gillard (2020) showed
that many experiments studying nonspeech auditory perception
used flat tones as stimuli, despite the fact that such tones are unre-
alistic: Their content lacks dynamic changes found in the tempo-
ral structure of naturalistic sounds. Experiments that included
such naturalistic content made novel discoveries about the audi-
tory system. For example, a study of audiovisual integration
showed that tones with a temporal structure similar to impact
sounds, like the sound of a xylophone, but not flat tones, which
lack temporal variation, were reliably integrated with visual

information when participants judged tone duration (Schutz &
Kubovy, 2009).

Similarly, Dawel, Miller, Horsburgh, and Ford (2021) and
Barrett, Adolphs, Marsella, Martinez, and Pollak (2019) showed
that many experiments studying face perception used highly stan-
dardised and posed facial configurations which are not represen-
tative of the real-world variation in facial configurations. When
naturalistic facial configurations are used in experiments, reported
findings differ from previous results. For example, using natural-
istic facial stimuli, Sutherland et al. (2013) found that facial first
impressions have three underlying dimensions (trustworthiness,
dominance, and youthfulness/attractiveness) instead of just two
(trustworthiness and dominance), as previously reported when
standardised facial stimuli were used (Oosterhof & Todorov,
2008; Todorov, Said, Engell, & Oosterhof, 2008).

In these examples, researchers noticed and resolved some dis-
crepancy between the variation of experimental and real-world
stimuli. Such an approach, while useful, does not completely
solve the problem of unknown unknowns. This is because there
may be many more real-world variations in stimuli that could
update one’s understanding of a phenomenon, if they were intro-
duced in experimental designs. However, a researcher cannot
identify them unless they have a thorough description of real-
world variation.

One solution to this issue is “high-throughput natural
description”: The systematic collection and annotation of large,
representative corpora of real-world stimuli to identify unknown
unknowns.

An example in the field of emotion perception demonstrates
the value of this approach. By collecting and annotating 7 million
pictures of faces and 10,000 hours of filmed video from the
internet, Srinivasan and Martinez (2018) discovered that the
emotion-category labels of disgust, anger, sadness, and happiness
are associated with 1, 5, 5, and 17 “distinct” facial configurations,
respectively. Such variation in the range of facial configurations
conveying different emotions was an unknown unknown in the
research cartography of emotion perception, and studies investi-
gating responses to facial configurations expressing certain emo-
tion categories have yet to investigate responses to the entirety
of the observed variation, to the best of our knowledge (Barrett
et al., 2019). Thus, high-throughput natural description can aid
in defining the design space of relevant experiments via the
identification of unknown unknowns.

However, this solution is not an easy fix to the problem of
unknown unknowns. Large-scale naturalistic observation is logis-
tically challenging. Obtaining 7 million images of faces from the
internet is in itself difficult, but the difficulty ramps up if research-
ers wish to obtain a sample of faces from more diverse sources.
Furthermore, large-scale annotation can be as challenging as
large-scale naturalistic observation. For example, creating a corpus
of 7 million faces that is useful for answering different research
questions requires annotating the images for meaningful dimen-
sions. Coding action units (specific facial muscle movements)
manually via human annotators in these images can require
expertise, or can take years when the dataset is extremely large
(Benitez-Quiroz, Srinivasan, & Martinez, 2016; Srinivasan &
Martinez, 2018). Furthermore, the pool of annotators must itself
be (very) large, not only to deal with the size of the corpus, but
also to identify relevant individual and cultural variations in the
way coders perceive the dimensionality of the stimuli.

In sum, while high-throughput natural description aids in
the identification of unknown unknowns of a research design
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space, it introduces significant logistical challenges. However,
these challenges can be surmounted via a combination of mass
collaboration, automation (a use case is already present in the
aforementioned emotion perception example where Srinivasan
& Martinez, 2018, use a computer vision algorithm to annotate
action units in the internet images; Benitez-Quiroz et al., 2016;
Yitzhak et al., 2017), citizen science (Awad et al., 2018, 2020;
Hilton & Mehr, 2021), and gamification (Long, Simson,
Buxó-Lugo, Watson, & Mehr, 2023). In fact, Almaatouq et al.
already propose that these aforementioned solutions could be
deployed in the later stages of the integrative experiment design

Nonetheless, the application of these solutions for executing
high-throughput natural description should not be ignored, as
they amplify concerns about the up-front costs and inclusivity
of the integrative approach. Few research groups may have the
resources to implement an integrative experiment design, and
fewer groups still may be able to solve its unknown unknowns
problem during the research cartography stage. While we are
enthusiastic about the ideas in the target article, we believe it is
necessary to be explicit and constructive about the requirements
of an integrative experiment design approach.
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Abstract

This commentary argues against the indictment of current exper-
imental practices such as piecemeal testing, and the proposed inte-
grated experiment design (IED) approach, which we see as yet
another attempt at automating scientific thinking. We identify a
number of undesirable features of IED that lead us to believe
that its broad application will hinder scientific progress.

After so many years observing the prosecution of p-values and
everyday laboratory life, we are pleased to see a growing number
of researchers turning their attention to critical matters such as
theory development and experimentation (e.g., Proulx & Morey,
2021). But as we transition into these important new debates, it
is crucial to avoid past intellectual excesses. In particular, we
note a tendency to embrace passive technological solutions to
problems of scientific inference and discovery that make little
room for the kind of active theory building and critical thinking
that in fact result in meaningful scientific advances (see Singmann
et al., 2023). In this vein, we wish to express serious reservations
regarding Almaatouq et al.’s critique.

The observation of puzzling, incongruent, and incommensu-
rate results across studies is a common affair in the experimental
sciences (see Chang, 2004; Galison, 1987; Hacking, 1983). Indeed,
one of the central roles of experimentation is to “create, produce,
refine and stabilize phenomena” (Hacking, 1983, p. 229), which is
achieved through an iterative process that includes the ongoing
improvement of experimental apparati (see Chang, 2004;
Trendler, 2009) and relevant variables (Jantzen, 2021). This pro-
cess was discussed long ago by Maxwell (1890/1965), who
described it as removing the influence of “disturbing agents”
from a “field of investigation.”
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