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Spectro-temporal acoustical markers
differentiate speech from song across
cultures

Philippe Albouy 1,2,3 , Samuel A. Mehr 2,4,5, Roxane S. Hoyer1,
Jérémie Ginzburg1,6,7, Yi Du 8 & Robert J. Zatorre 2,3,7

Humans produce two forms of cognitively complex vocalizations: speech and
song. It is debated whether these differ based primarily on culturally specific,
learned features, or if acoustical features can reliably distinguish them. We
study the spectro-temporal modulation patterns of vocalizations produced by
369 people living in 21 urban, rural, and small-scale societies across six con-
tinents. Specific ranges of spectral and temporal modulations, overlapping
within categories and across societies, significantly differentiate speech from
song. Machine-learning classification shows that this effect is cross-culturally
robust, vocalizations being reliably classified solely from their spectro-
temporal features across all 21 societies. Listeners unfamiliar with the cultures
classify these vocalizations using similar spectro-temporal cues as themachine
learning algorithm. Finally, spectro-temporal features are better able to dis-
criminate song from speech than a broad range of other acoustical variables,
suggesting that spectro-temporal modulation—a key feature of auditory neu-
ronal tuning—accounts for a fundamental differencebetween these categories.

Human vocal communication involves twodistinctmodes: speech and
song1–4. Unlike simpler vocalizations (screams, laughter, etc.), singing
and speaking rely on temporally extended recursive grammatical
structures and are based on arbitrary mappings that must be learned
within each culture5. A great deal of work has documented the
remarkable cross-cultural variability in both the structural features of
speech and song, as well as their acoustical manifestations6–12, but
debate continues about whether the two categories may be dis-
tinguished across societies on the basis of acoustical features alone.
Speech and song are produced by the samevocal tract, yet eachmakes
distinct demands on musculature, breathing, and motor control
mechanisms13,14, raising the possibility that certain acoustical cues
could serve as markers of each category15. However, even though

people readily distinguish speech and song, the cues underlying the
categories, even within cultures, are far from clear11,16–19, so that such a
claim is difficult to address. Indeed, even if speech and singing reliably
exist as separate, recognizable entities, their cognitive representation
could dependmostly on learned regularities that are particular to each
cultural group.

One sourceof difficulty in comparing speech and song is that they
each form part of broader communication systems of language and
music, respectively. These systems share certain features (e.g., syntax),
but also differ in important ways (e.g., the hierarchical organization of
metrical patterns)5,20. Pitch variation in music tends to be more dis-
crete than in speech1,12,21, leading to the formation of hierarchical tonal
organization22, which may be a fundamental property of music
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worldwide8. But it remains unclear whether such descriptive differ-
ences represent acoustic phenomena invariant enough to form a suf-
ficient basis for categorization across different musical and linguistic
systems, or, instead, are merely associated with the two domains. And
since the song has mostly been explored only in Western cultures it is
uncertain if the features described to date are widely characteristic of
most human songs or only of those that have been well studied23.

Recent developments in neurophysiology and cognitive neu-
roscience offer a rigorous framework for testing how speech and song
could differ. Complex sounds can be characterized according to the
distribution of their spectro-temporal modulation (STM) power24.
Neurons in auditory regions across various species can be described in
terms of their spectro-temporal receptive fields, which have been
shown to constitute an efficient coding scheme for complex acoustical
patterns25–27. Spectral and temporalmodulation dimensions are largely
separable in both humans and monkeys28. Moreover, neuronal
spectro-temporal tuning functions correspond well to the most rele-
vant acoustical features that characterize different animals’ commu-
nicative signals, including birdsong27, catmeows29, andmonkey calls30,
indicating a match between the acoustics of important sounds in the
environment and the neural hardware needed to process them.

Might spectro-temporal modulation content constitute a funda-
mental, and sufficient difference to account for how speech and song
differ from one another? Acoustical analysis shows that speech tends
to contain faster temporal modulations than music12,15,31, and temporal
modulation cues are well-known to be sufficient for speech percep-
tion, even when spectral modulations are degraded32. Conversely,
degradation of spectral modulations abolishes the perception of
melodic content in song, while leaving speech comprehension intact,
whereas degradation of temporal modulations renders the speech
content of songs incomprehensible but has little effect on the
melody33. These findings dovetail well with the idea that spectral and
temporal features are processed in partially distinct neural popula-
tions within34,35 and across the two hemispheres33,36,37.

Taken together, those results suggest that speech and song may
exploit different ends of the spectro-temporal continuum. But such a
conclusion suffers from a major limitation because although the high
temporal rate of speech has been confirmed for many distinct
languages38, the spectro-temporal features of music have mostly been
characterized in a limited Western musical repertoire, which is not
necessarily representative of all human musical systems. Whether the
role of spectro-temporal modulations in distinguishing speech from
song is an idiosyncrasy of some cultures, or whether it represents a
more fundamental aspect of the biology of human communication —

as one would expect, given the fundamentally different functional
roles of speech39,40 and music2 in human evolution, and their partly
distinct neural representations — is the question we address in
this paper.

Specifically, we tested whether distributions of STM power in
speechand song are sufficient todistinguish the two vocalization types
within and across 21 societies sampled from all inhabited continents
and comprising small-scale, rural, and urban societies. The recordings,
produced in 18 languages from 12 language families, were gathered
from native speakers of each language who each lived in the society
where the recording was gathered (see ref. 6 for full details and
Table S1 and Fig. S1). Three hundred sixty-nine people from these
societies were asked (i) to speak in a casual, ordinary fashion, on a
mundane topic directed to the experimenter (e.g., describing their
daily routine); and (ii) to sing a song of their choice, with the only
requirement being that the song was not intended to be sung to an
infant. Whether the vocalization was considered to be an example of
speech or song was therefore determined strictly by the person pro-
ducing the vocalization, and not imposed in anyway by the researcher.
Importantly, we analyzed only matched pairs of speech and song

produced by the same individual, allowing us to test for category dif-
ference independently of individual characteristics of each person’s
voice (such as pitch, breathiness, nasality, etc.), whichwould otherwise
confound the comparison.

We predicted (i) that if speech and song are characterized by
distinct STM signatures, we should be able to observe distinct dis-
tributions of these patterns with appropriate acoustical analysis; (ii)
that if such differences are truly common across societies, we should
observe substantial overlap in the distribution of STM power for each
category (speech, song) across all societies studied; (iii) that if these
STM markers are sufficient to categorize the two classes of vocaliza-
tions, then a machine-learning classifier should be able to determine
which sample corresponds to speech or song with adequate accuracy,
based solely on their STM profile; (iv) that the information most used
by the classifier should correspond to the spectro-temporal signatures
derived from the initial acoustical analysis; (v) that listeners unfamiliar
with the language or music of the different societies should never-
theless be able to correctly classify speech and song, with a similar
ordering of accuracy across samples as themachine-learning classifier,
if human judgments are based on spectro-temporal cues; and (vi) that
if spectro-temporalmodulation features constitute a fundamental, and
sufficient difference to account for how speech and song differ from
one another, classification performed with spectro-temporal features
should bemore accurate than decoding performedwith a broad range
of other acoustical variables (pitch, formants, intensity, vowel rates,
rhythmic measures etc.).

In thiswork,we show that specific ranges of spectral and temporal
modulations differentiate speech from song in a consistent fashion
and that those ranges overlap within categories and across societies.
Machine-learning analyses confirm that this effect is cross-culturally
robust, with vocalizations reliably classified as song or speech solely
from their spectro-temporal modulation patterns across all 21 socie-
ties. Listeners unfamiliar with the cultures could classify these vocali-
zations with similar accuracy patterns as the machine-learning
algorithm, using similar spectro-temporal cues to those used by the
classifier. Finally, we show that spectro-temporal features are better
able to discriminate song from speech than a broad range of other
acoustical variables, suggesting that spectro-temporal modulation
content accounts for a fundamental difference between speech and
song, beyond general acoustic cues.

Results
We decomposed the acoustical signal of the vocalization samples
using the Spectro-Temporal Modulation (STM) framework (Fig. 1).
STM patterns for singing and speaking samples were extracted
(ModFilter algorithm41) for each vocalization (see “Methods” section
and ref. 33 for a similar procedure), and then used for univariate and
multivariate analyses. The identical pipeline was used for both speech
and song samples, thus avoiding any kind of bias in the procedure.

We contrasted the spectro-temporal modulation patterns of song
and speech vocalizations using nonparametric permutation statistics
with FDR correction in the spectral and temporal domains (as imple-
mented in FieldTrip42 and incorporated in Brainstorm43- see “Methods”
section). This analysis revealed two hotspots of increased spectral
modulations in song as compared to speech samples (105 permuta-
tions, FDR corrected, p <0.001): hotspot 1: peak at 3.53 cyc/kHz in the
spectral domain and 0.66Hz in the temporal domain; hotspot 2: peak
at 7.11 cyc/kHz in the spectral domain and −0.66Hz in the temporal
domain (note that human speech is symmetric between positive and
negative temporal modulation frequencies41), which correspond to
increasing and decreasing frequency trajectories, respectively.

We also detected three hotspots of increased temporal modula-
tion in speech as compared to song: hotspot 1: peak at 6.16Hz in the
temporal domain and 0 cyc/kHz in the spectral domain; hotspot 2:
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peak at −6.33Hz in the temporal domain and 0 cyc/kHz in the spectral
domain; hotspot 3: peak at 4.83Hz in the temporal domain and
5.07 cyc/kHz in the spectral domain.

To assess the consistency of this effect across societies we gen-
erated a heatmap illustrating the overlap in a number of societies that
display a significant effect in the hotspots identified in Fig. 2A This
analysis (Fig. 2B) revealed that 20/21 societies showed a significant
increase of spectralmodulations in singing samples vs speech samples
at 3.71 cyc/kHz (in the spectral domain) and 0.66Hz (in the temporal
domain). Moreover, 20/21 societies showed a significant increase in
temporalmodulations in speech samples vs singing samples at 6.33Hz
(in the temporal domain) and 0.09 cyc/kHz (in the spectral domain).
The robustness of this effect was also confirmed with a k-means clus-
tering analysis performed on the coordinates in the spectro-temporal
domain of the statistical peaks of each society for the contrast song vs.
speech. Note that for this analysis the absolute values of temporal
modulations were used, as human vocalizations are symmetric
between positive and negative temporal modulation41. This analysis
revealed 2 clear clusters with centroids at: cluster 1: 3.48 cyc/kHz (in
the spectral domain) and 0.13Hz (in the temporal domain, Fig. 2C) and
cluster 2: 0.33 cyc/kHz (in the spectral domain) and 6.33Hz in the
temporal domain.

To confirm the cross-cultural robustness of these effects, we then
used a Support Vector Machine (SVM) classifier with fieldsite-wise k-
fold cross-validation to classify song and speech vocalization samples,
using only the STM patterns as input features (see “Methods” section).
This approachprovides a strong evaluationof cross-cultural regularity:
themodel is trained only on data from 20 of the 21 societies to predict
whether each vocalization in the 21st society is song or speech. The

procedure is repeated 21 further times, with data from each society
being successively held out, to estimate the classification performance
across the full set of societies. The summary of the SVM’s performance
(average of all models) reflects, corpus-wide, the degree towhich song
and speech STM patterns are stereotyped because high classification
performance can only result from high cross-cultural regularities.

Themodels significantly classified song and speech above chance
(Wilcoxon rank test, two-tailed, W(20) = 231, p <0.001; Rank biserial
correlation (effect size) = 1.00; 95% Confidence Interval = [29.9 40.6]; -
Fig. 2D; accuracy = 84.5% ± 10.4 (SD); sensitivity = 83.8% ± 15.9, specifi-
city = 85.2% ± 13.8; ROC curves for each society are presented in
Fig. 2E). Evaluating classification performance within the recordings in
each fieldsite showed a high degree of cross-cultural regularity, with
the performance in all 21 fieldsites above chance level (Fig. 2D, E), even
though accuracy varied across different sites. It is relevant to note that
this variability in the performance of the model across societies could
be explained by the sound sample duration: sound duration directly
affects the quality of the STM estimation, and it also, in consequence,
affects decoding accuracy (see the positive correlation r(20) = 0.63,
p <0.001 between SVM decoding accuracy against average sample
duration (s) presented in Fig. S2).

We then investigatedwhat STM features themodel relied upon to
discriminate song and speech STM patterns. For each classifier, we
extracted the feature weights to estimate their relative importance
(z-scored, averaged across societies). We identified four spectro-
temporal patterns showing substantial differences in the features the
model relied upon to reliably classify speech and song across societies
(Fig. 2F). Furthermore, the four regions of the STM space most critical
to the classifier’s performance correspond well to the acoustical

Fig. 1 | Extraction of STM patterns for singing and speaking vocalization
samples. Sound waves, spectrograms, and modulograms of representative voca-
lizations (here, in recordings from theNyangatomof Ethiopia; left panel: song, right
panel: speech) revealing the acoustic complexity of the song and speech samples.

For each sample, we extracted the STM (modulograms) patterns. We then con-
trasted the song and speech STM patterns using nonparametric permutation sta-
tistics (FDR corrected) and used the STM patterns data as features to perform a
2-class SVM decoding of music and speech samples (see Fig. 2).
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differences identified in the initial analyses (Fig. 2A, B) as shown by the
a posteriori overlap observable in Fig. 2C, F.

To confirm the reliability of these findings, and to verify that the
accuracy rates were not inflated by any incidental similarities between
the samples used for cross-validation, we repeated the same analysis
with four alternative cross-validation strategies, using the same cross-
validation procedure but doing so across countries, language families,
world subregions, and world regions instead of fieldsites (societies).
The results robustly replicated in all cases with large effect sizes (Fig. 3,
see Supplementary Material for detailed statistics).

Behavioral analysis
We then studied naïve listeners’ sensitivity to these spectro-temporal
features. We played the song and speech recordings to 74 individuals
who were asked to rank, as rapidly as possible on a 5-point scale,
whether each speaker was singing (code 1) or speaking (code −1) (see
Fig. 4A). These primarily French-speaking listeners from Quebec
(Canada) and France were presumably unfamiliar with the languages
or music of most of the societies from which the sounds were recor-
ded. Their judgments were accurate, with large effect sizes for both
Song (Wilcoxon rank test, two-tailed, W(73) = 2775, p <0.001; Rank
biserial correlation (effect size) = 1.00; 95% Confidence Interval = [86.2
89.8]) and Speech (Wilcoxon rank test, two-tailed,W(73) = 0,p < 0.001;
Rank biserial correlation (effect size) = 1.00; 95% Confidence Inter-
val = [−92.7 −88.8]- Fig. 4B).

To test whether these listeners were using the spectro-temporal
cues that distinguished song from speech in the prior analyses, we
tested if the features identified on the STM patterns (see Figs. 2 and 3)
could predict their behavioral ratings. To do so, we computed the
normalized difference between Song STM and Speech STM and
between Song and Speech behavioral ratings (with a positive score
representing a large difference between song and speech ratings) for
each of the 369 vocalizations/speakers (see “Methods” section). We
then computed the correlation (FDR corrected, p <0.05, Fig. 4D)
between these difference scores and observed (i) a positive relation-
ship between increased spectral modulation for song relative to
speech (−0.33Hz in the temporal domain and 3.35 cyc/kHz in the
spectral domain – see Fig. 4D) and positive behavioral difference
scores (corresponding to large difference ratings between song and
speech) and (ii) a negative relationship between decreased temporal
modulation for song relative to speech (4.49Hz in the temporal
domain and 0.09 cyc/kHz in the spectral domain) and positive beha-
vioral difference scores (corresponding to large difference rating
between song and speech– see Fig. 4D).

To test the consistencyof our listeners’ inferences across cultures,
we computed the fieldsite-level behavioral ratings. Within each of the
21 societies, listeners’ judgments were accurate, again with large effect
sizes, for both Song (Wilcoxon rank test, two-tailed, W(20) = 231,
p <0.001; Rank biserial correlation (effect size) = 1.00; 95%Confidence
Interval = [76.5 90.3]) and Speech (Wilcoxon rank test, two-tailed,
W(20) = 0, p < 0.001; Rank biserial correlation (effect size) = 1.00; 95%

Fig. 2 | Cross-cultural spectro-temporal markers of song vs. speech identified
with univariate analyses andmachine learning. A Song vs. Speech contrast (two-
tailed) in the STM domain across all societies (p <0.001, FDR corrected in the
spectral and temporal modulation domains, n = 369 independent vocalizations).
B Heatmap (smoothed) depicting the number of societies showing a significant
effect in the clusters identified in (A). Each value reports a numeric count, with
larger counts associated with black coloring. C K-means clustering of statistical
peaks; dots represent each society. Dark lines illustrate the boundaries of the sig-
nificant effects presented in (A). D Fieldsite-wise cross-validated support vector

machine decoding accuracy (chance level: 50%). The colored dots represent the
accuracy for each society (sorted as a function of accuracy with a jet colormap)
n = 21 independent societies. E Receiver operating characteristic curve (ROC) for
each society (same color code as in (A). Black dashed line represents the chance
level. F Normalized feature weights in the modulation power spectrum domain
showing featureswith the largest influence (z-score, averageof the 21 classifiers) for
the classifier. Dark lines illustrate theboundaries of the significant effects presented
in (A).
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Fig. 3 | Cross-cultural regularities across countries, language families, world
subregions, and world regions identified with machine learning. A Left Panel:
Country-wise cross-validated decoding accuracy (chance level – 50%). The colored
dots represent the performance accuracy for each country (sorted as a function of
accuracy with a jet colormap) n = 18 independent countries. Middle Panel: Receiver
operating characteristic curve (ROC) for each country (same color code as in the

left panel). Black dashed line represents the chance level. Right Panel: Features
weights in the MPS domain showing features with the largest influence (z-score,
average of the 18 classifiers). B–D Same as (A) for language families (n = 15 inde-
pendent families), world subregions (n = 14 independent subregions), and world
regions (n = 6 independent regions) respectively.
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Confidence Interval = [−89.9 −81.1]) - Fig. 4C, see Fig. S3 for the same
analysis for countries, language families, world subregions and world
regions.

Finally, to confirm that human judgments were based on similar
spectro-temporal cues as those identified in the STM, we investigated
whether these listeners unfamiliar with the different societies were
identifying speech and song samples with a similar ordering of accu-
racy across samples as the machine-learning classifier (see Fig. 2). To
do so, we computed the correlation between SVM decoding accuracy
and the normalized difference between Song and Speech behavioral
ratings computed within each society. As expected, this analysis
revealed that decoding accuracy of the classifier was positively cor-
related with the normalized behavioral scores (r(20) = 0.51,
p =0.001, Fig. 4E).

Acoustical Analysis
Finally, we studied whether spectro-temporal modulation features
constitute a fundamental, and sufficient difference to account for how
speech and song differ fromone another, or whether acoustic features

of the vocalizationsmight account for the results just as well. To do so,
we used a broad range of acoustical variables extracted in ref. 6 (such
as pitch (f0),first formant (f1), amplitude (intensity), pitch space, vowel
rate, vowel space, roughness etc. see Supplementary Material and
Table S2 for details) to test whether these variables were: (i) correlated
with spectro-temporal features, (ii) could decode speech and song
vocalizations with similar, higher or lower accuracy than with STM
features, and (iii) whether decoding accuracy for acoustical data can
predict the behavioral scores of naïve listeners.

To analyze relations between vocalization type, STM features, and
acoustic features over and above the known correlations between STM
features and acoustic features, we used Partial Least Squares (PLS)
analysis, with the acoustic features as predictor variables and STM
features as response variables. We used PLS instead of multiple linear
regression models to take into account the multicollinearity in the
acoustic features and applied the analysis to each spectral/temporal
coordinate of the entire STMdomain across song and speech, yielding
in one PLS model per spectral/temporal coordinate. For each model
we then extracted the fitted responses values and estimated if the

Fig. 4 | Naïve listeners distinguish song from speech vocalizations across cul-
tures.ABehavioral task: 74 individuals were asked to rank, as rapidly as possible on
a 5-point scale, whether each speaker was singing (code 1) or speaking code (−1),
only 74participants completed theexperiment.BBehavioral ratings (chance level–
0) for song (orange) and speech (blue) samples. Diamonds represent the ratings for
each listener (n = 74 independent individuals). C Fieldsites-level behavioral ratings
(chance level – 0) for song (orange) and speech (blue) samples. Colored circles
represent each of the 21 societies/cultures (sorted as a function of the SVM

decoding accuracy of Fig. 2D - with a jet colormap - n = 21 independent societies). D
Correlation between normalized difference scores (Song MPS vs. Speech MPS and
Song vs. Speech behavioral ratings) represented in the MPS domain. (FDR cor-
rected in the spectral and temporalmodulationdomains, p <0.05).E Scatter plot of
SVM decoding accuracy (Fig. 2D) against behavioral normalized difference (Song
vs. Speech). Colored circles represent each of the 21 societies/cultures (sorted as a
function of the SVM decoding accuracy of Fig. 2D, two-tailed).
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models could significantly fit the STMdata. To do so, we computed the
correlation (FDR corrected, p <0.001, Fig. 5A–C) between the fitted
responses (PLS models) and observed response (STM features) in the
entire STM domain.

This analysis revealed two clear hotspots which overlapped
directly with the hotspots reported in Figs. 2, 3 and 4, where STM data
is predicted by acoustical data (hotspot 1: peak at 3.49 cyc/kHz in the
spectral domain and 0.49Hz in the temporal domain, Fig. 5A, B; hot-
spot 2: peak at 0.13 cyc/kHz in the spectral domain and 7.13Hz in the
temporal domain, Fig. 5A, C). To determine which acoustical variables
accounted most for these predictions, we calculated the variable
importance in projection (VIP) scores for the PLS regression models
for spectral and temporal statistical peaks reported in Fig. 5A; such VIP
scores summarize the degree of contribution a variable makes to the
model (see “Methods” section for further information). As variables
with a VIP score greater than 1 are considered important for the pro-
jection of the PLS regression model44, we report here only variables
with VIP scores greater than 1. For the spectral hotspot, variables such
as Pitch (fundamental measure of the highness or lowness, in fre-
quency), Amplitude Space (dynamic measure of intensity’s range over
time), and Temporal Modulations were the variables that contributed
most to the prediction of the STM data. For the temporal peak,
Amplitude Space, and Second Formant were the variables that con-
tributedmost to theprediction of the STM. For illustrationwegrouped
the variables as a function of their labels (i.e, pitch, intensity etc., see
labels in SupplementaryTable S2) but note that the complete list of VIP
scores is presented in Figs. S4 and S5.

On the basis of these results, we proceeded to ask whether
acoustical data alone are sufficient to classify speech and song voca-
lizations, or whether STM features are stronger predictors of vocali-
zation type. Given the cross-cultural STM results and the theoretical
motivation of this paper, we expected STM data to bemore predictive
of vocalization type (as opposed to STM and acoustic data being
complementary, or the acoustic data outperforming the STMdata). To
test this question, we used SVM classifier with fieldsite-wise k-fold
cross-validation (as in Fig. 2) to classify song and speech vocalization
samples, using either (1) only the STM features, (2) STM features and
acoustical data, (3) acoustical data only or (4) acoustical data only but
without the VIP variables as input features.

All models were decoding speech and song above chance (Wil-
coxon rank tests, two-tailed, W(20) values > 231 and all p-values
< 0.001, Rank biserial correlation (effect size) = 1.00). However, the
results showed a clear advantage of STM features over acoustic fea-
tures: nonparametric RM ANOVA (Friedman) performed on decoding
accuracy values revealed a main effect of models (χ2 (3) = 43.4,
p <0.001, Kendall’s W coefficient (effect size) = 0.68), with post hoc
tests (Durbin-Conover - Bonferroni corrected) showing significantly
higher classification accuracy with STM features alone than with
acoustical data alone (p <0.001) and than acoustical data without VIP
variables (p < 0.001). Moreover, classification performed with STM
features and acoustical features was significantly more accurate than
classification performed with acoustical data (p <0.001), and than
classification performed with acoustical data without VIP variables
(p < 0.001). Additionally, classification performed with acoustical fea-
tures was significantly more accurate than classification performed

Fig. 5 | Superiority of STM features over other acoustical variables. A R values in
the STM domain for the correlation between fitted responses (PLS) and observed
responses (STM) (FDR corrected in the spectral and temporalmodulation domains,
p <0.05, two-tailed). Dark lines illustrate the boundaries of the significant effects
presented in (Fig. 2A). B, C Left Panels: Scatter plot of fitted responses (PLS) and
observed responses (STM) for the spectral (see letter (S) in (A), statistical peak (B),
and temporal (see letter (T) in (A) statistical peak (C)). Circles represents each
speakers/vocalization (n = 369), two-tailed, all ps < 0.001. Right panels: VIP scores:

the horizontal bars show the acoustic features with the largest influence in the PLS.
D Fieldsite-wise cross-validated (n = 21 independent societies) support vector
machine decoding accuracy (chance level: 50%) for four alternative strategies with
STM features only (white), STM+ acoustical features (black), Acoustical features
only (gray) and Acoustical features without VIP variables (light gray). The colored
dots (jet colormap sorted as a function of accuracy for themodel trained with STM
features only) represent the accuracy for each society. **p <0.001, ns non-sig-
nificant, post hoc pairwise comparisons were two-tailed, Bonferroni corrected.
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with acoustical data without VIP variables (p < 0.001). Finally, the
classification performed with STM features and the classification per-
formed with STM features + acoustical features were not significantly
different (p = 0.91). Spectro-temporal features of speech and song
therefore more reliably distinguish between the vocalization types
than do general acoustic features of the vocalizations.

Last, we asked whether human judgments could be linked to the
acoustical features. To do so, we computed the correlation between
SVM decoding accuracy of the acoustical data and the normalized
difference between participants’ categorizations of the vocalizations
as speech and song, computed within each society. The decoding
accuracy of the classifier trained on acoustical data was not correlated
with the normalized behavioral scores (r(20) = 0.14, p =0.54, Fig. S6),
in sharp contrast with the STM data reported above (Fig. 4E). This
suggests that participants prioritized STM features over acoustic fea-
tures to inform their categorization decisions.

Discussion
Using vocalizations drawn from a diverse set of languages and
societies6 we found that speech and song systematically differ in their
typical acoustical signatures: songs contain greater energy than spo-
ken utterances at higher spectral and lower temporal modulation
rates, whereas speech shows the reverse effect (Fig. 2A). This pattern
was sufficiently consistent that, despite variation in the distributions of
STMpatterns in the vocalizations of each society tested (Figs. S7–S10),
we still observed near-complete overlap within each category (song
and speech) in the twospecific acoustical ranges across nearly all of the
societies (Fig. 2B); conversely, there was essentially no overlap
between the two categories, as shown by the white space between the
blobs in Fig. 2B.

That these spectro-temporal cues suffice to classify the two
categories well was shown by the outcome of a machine-learning
classifier, which was trained exclusively on the spectro-temporal fea-
tures, and correctly identified both classes of vocalization well above
chance (mean 84.5%with comparable sensitivity and specificity) for all
of the 21 societies (Fig. 2D), albeit with differing degrees of accuracy.
To verify that this outcomewas notmerely driven by similarities in the
speech or song samples across societies that may have been geo-
graphically or linguistically related, we tested the classifier using only
data from one country/region or language family (classifier trained on
the others); the outcomes were essentially the same (Fig. 3). Further-
more, the information used by the classifier (Fig. 2F) corresponded
well to the ranges of modulation power that characterize the two
classes, as identified in the initial univariate analysis (Fig. 2A), indicat-
ing that the classifier achieved high performance by using these same
ranges of STM (see Supplementary Discussion and Figs. S11 and S12 for
generalization of our findings to Cantonese, a tonal language with
more than one level tone).

We also show that human listenerswhowere unfamiliarwithmost
of the speech and song systems sampled here performed close to
ceiling when asked to indicate which vocalization corresponded to
which category (Fig. 4B). Their ratings were directly related to the
distribution of energy in the modulation power spectrum (Fig. 4D),
and the ranking of behavioral accuracy across societies was similar to
that of the classification algorithm (Fig. 4E, see also Fig. S3), suggesting
that both the classifier and the humans relied on the same STM cues
that descriptively differentiate the two classes.

Finally, we showed that spectro-temporalmodulation features are
sufficient to differentiate speech and song vocalization at a high level
of accuracy (~85%), because the addition of 98 other acoustical fea-
tures (pitch, formants, intensity, vowel rates, harmonicity, rhythmic
measures etc.) that are widely used to characterize speech and song
did not improve performance. Classification performed with spectro-
temporal features was also significantly more accurate than classifi-
cation performed with these other acoustical variables, except insofar

as they also overlap with STM information (Fig. 5). This observation
suggests that STMcues are necessary for good classification of the two
categories. In fact, whereas behavioral performance of our listeners
correlated well with STM-based classification, it did not correlate sig-
nificantly with the classification using the other acoustical variables
(Fig. S6). Thus, whether or not they are aware of it, listener categor-
izations of speech and song are apparently driven by the spectro-
temporal characteristics of the vocalizations, not by other acoustic
characteristics.

The findings support the idea that some universals exist in the
acoustical manifestations of the two principal modes of cognitively
complex auditory-vocal communication found in our species. Because
the differences in specific ranges of STMpatterns for speech and song
are widely shared across culturally, linguistically, or geographically
unrelated groups of people, we propose that they represent a funda-
mental property of how sounds are generated by the human vocal
tract, depending on the nature of the communication. To transmit
denotative information using speech, a high level of temporal mod-
ulation is used, but spectral modulation is less prominent; whereas to
communicate musical content and affective states using song, a high
level of spectral modulation is used, but at lower temporalmodulation
rates. The fact that people unfamiliar with the most of the linguistic or
musical systems in question were nevertheless easily able to identify
which vocalization belonged to which category, and that they used
essentially the same spectro-temporal cues as the machine-learning
classifier had determined to be optimal, supports the conclusion that
such cues are widely shared and readily available even in the absence
of any culturally specific knowledge.

One potential explanation for the distinct spectro-temporal sig-
natures of speech and song is that they result from differences in
neural control over the vocal musculature during speaking versus
singing14. The higher temporal modulation in speech reflects the syl-
lable rate (opening and closing of themouth), which tends to be faster
when speaking than when singing31. The longer syllable duration in
singing may allow for production of more stable pitch values, leading
to better encoding of tonal relationships important for music45. Con-
versely, the high spectralmodulation rate associatedwith songmaybe
related to the complex physiology of phonation typical of singing that
generates more energy in the upper harmonics13,46.

Most songs, including those used here, incorporate both spoken
and melodic content simultaneously. Thus, both types of modulation
are typically present together. But what distinguishes the two is their
different acoustical signature, as determined by comparing them
against one another (Fig. 2A and Figs. S7–S10). This is not to say that all
cultures necessarily carve out the spectro-temporal space in exactly
the same way. Indeed, although there was almost complete overlap of
at least part of the distribution of STM patterns for both speech and
song across societies (Fig. 2B), and the centroids of each distribution
were clustered in close proximity (Fig. 2C), a glance at the individual
modulation differenceplots for each culture (Figs. S7–S10) reveals that
there are important differences across them, especially in the songs,
whichexploitwide rangesof spectral and temporalmodulation, even if
they are generally fairly far from the range of modulations used for
speech. Further study of how and why these cues are deployed in
different musical traditions could help to identify and explain such
cross-cultural differences. Indeed, the spectro-temporal framework
may prove particularly valuable for examining questions of cross-
cultural variability in language andmusic, since it does not require the
selection of any particular linguistic or musical features, which are
notoriously vulnerable to culture-specific assumptions18; see also
Supplementary Information in ref. 8.

The clear acoustical distinction between song and speech should
not be taken to imply that top-down factors have no influence on the
perception of a vocalization as song or as speech. Indeed, the well-
known “speech-to-song” illusion47 demonstrates that speech may

Article https://doi.org/10.1038/s41467-024-49040-3

Nature Communications |         (2024) 15:4835 8



sometimes be perceived as song after repeated presentation, even if
the acoustics are held constant. This phenomenon has been attributed
both to particular acoustical features of sounds susceptible to the
illusion, as well as to individual differences across listeners48–50. The
spectro-temporal framework may provide a useful approach to
investigate vocalizations that are intermediate between canonical
speech and song, andwhichmay share features of both, not only in the
context of the speech-to-song illusion, but also more broadly to study
artistic forms inwhich speech and song features are blended (e.g. rap),
or in speech with more prominent song-like features (e.g. infant-
directed speech6).

The findings presented here fit well with previous empirical work
examining the perceptual relevance of acoustical cues for speech and
music. Several prior studies have shown that temporal rates of speech
samples from different languages are in the range of 4–6Hz15,38. Music
from Western and from diverse cultures is generally less than half the
speed of speech12,15,38. These observations are compatible with ours, in
which speech temporal modulation occupied a range of 5–8Hz, while
song temporal modulations were close to 1Hz. Other acoustical fea-
tures have been proposed as distinguishing song from speech,
including pitch height, harmonicity, rhythmic regularity, and discrete
pitches7,12,19. Our analysis of 98 acoustical features however suggests
that the STM framework provides a parsimonious way of accounting
for the two categories, since STM features alone generated high clas-
sification rates, while the addition of the other features did not
improve classification.

In a direct test of the importance of spectral and temporal cues for
song and speech, a previous study33 found that perception of English
or French speech content in songs remained largely intact with spec-
tral degradation, but quickly deteriorated with temporal degradation,
whereas perception of the melodic content of the songs was largely
abolished with spectral degradation but was not much affected by
temporaldegradation. Thosefindings built uponprior studies showing
the importance of temporal modulations for English speech32,41. The
current results extend the conclusions about the importance of tem-
poral and spectral cues for speech and melody, respectively, beyond
Western linguistic and musical systems, to encompass a widely dis-
tributed set of cultures.

The differences we observed in the present study for speech and
song can be interpreted within the context of neuroscience findings
that suggest partially dissociable neural representations of the two
types of signals. Recent functional MRI data51 using a voxel decom-
position approach suggest that speech andmusic havedistinct cortical
representations as cognitive domains, rather than on the basis of
acoustical cues. Indeed, intracranial recordings suggests the existence
of a cortical region, located bilaterally within the anterior temporal
lobes, that is specifically sensitive to song over all other sound
categories52; interestingly, the same dataset also shows specific sensi-
tivity to spectral and temporal modulation in different, peri-primary
cortical regions.

A competing idea is that speech content vs song melody are
processed in distinct auditory cortical regions as a function of hemi-
spheric differences in sensitivity to spectral and temporal
modulations33. Numerous studies have adduced evidence that the
neuronal populations in left auditory cortex have higher temporal
resolution but lower spectral resolution, whereas the right auditory
cortex has the reverse specialization36,53–55. According to this view,
speech and song are represented in distinct neural substrates not
because of domain-specific aspects, but rather because of their ten-
dency to utilize opposite endsof the spectro-temporal continuum.The
data from the present study would be in line with this conclusion,
insofar as the STM signatures of speech and song are shown to be
sufficient to distinguish the two categories across many different lin-
guistic andmusical systems, suggesting that they reflect a fundamental

organizational specialization of the human brain to process the two
acoustical dimensions.

Our findings are therefore compatible with a biological origin of
speech and song, upon which cultural influences act to produce the
rich, varied, and beautiful forms of language and music found
throughout theworld. This possibiliy aligns well with three ideas about
human auditory perception. First, it fits with the hypothesis of efficient
coding, according to which the nervous system optimizes its repre-
sentation of the environment based on the most salient features
necessary for success56. Thus, neural responses are well-matched to
the statistical properties of the most important aspects of both the
visual57 and auditory worlds58 of a given species. Second, in auditory
neuroscience, the STM framework has proven successful in accounting
for the processing of complex environmental sounds, including
vocalizations24–28, in several species, which fits well with our conclu-
sions. Third, it is well aligned with the hypothesis that music and
speech tend to have distinct functional roles2,39,40 in human evolution.
Humans talk and sing, in part due to a nervous system that enables the
generation and perception of signals that occupy different portions of
the spectro-temporal continuum, allowing us to communicate the
richness of our thoughts, ideas, and emotions with one another.

Methods
This research complies with all relevant ethical regulations; the
experimental procedureswere approvedby the EthicsReviewBoardof
the CIUSSS de la Capitale Nationale (2022-2476).

Vocalization corpus
We used a corpus of 738 recordings of adult-directed song, and adult-
directed speech (all audio is available at https://doi.org/10.5281/
zenodo.5525161) from6. People (N = 369) living in 21 societies pro-
duced each of these vocalizations, respectively, with a median of 15
individuals per society (range 6-57). From those for whom information
was available, 86% were female.

Recordings were collected by the investigators of ref. 6 and/or
staff at theirfieldsites, all using the samedata collection protocol. They
translated instructions to the native language of the participants, fol-
lowing the standard research practices at each site. Fieldsites were
selected partly by convenience (i.e., via recruiting principal investiga-
tors at fieldsites) and partly to maximize cultural, linguistic, and geo-
graphic diversity (see Table S1).

For speech recordings, participants spoke to the researcher about
a topic of their choice (e.g., they described their daily routine). For
song, participants sang a song that was not intended for infants (see
ref. 6 for details); they also statedwhat that songwas intended for (e.g.,
“a celebration song”). Participants vocalized in the primary language of
their fieldsite, with a few exceptions (e.g., when singing songs without
words; or in locations that used multiple languages, such as Turku,
which included both Finnish and Swedish speakers).

Participants were free to determine the content of their vocali-
zations. This was intentional: imposing a specific content category on
their vocalizations would likely alter the acoustic features of their
vocalizations, which are known to be influenced by experimental
contexts6.

All recordings were made with ZoomH2n digital audio recorders,
using foamwindscreens (where available). To ensure that participants
were audible alongwith researchers, who stated information about the
participant and environment before and after the vocalizations,
recordings were made with a 360° dual x–y microphone pattern. This
produced two uncompressed stereo audio files (WAV) per participant
at 44.1 kHz; we only analyzed audio from the two-channel file onwhich
the participant was loudest.

The investigator at each fieldsite provided standardized back-
ground data on the behavior and cultural practices of the society (e.g.,
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whether there was access to mobile-phones/TV/radio, and how
commonly people used Infant Directed (ID) speech or song in their
daily lives). Most items were based on variables included in the
D-PLACE cross-cultural corpus6. The 21 societies varied widely in
their characteristics, from cities with millions of residents (Beijing) to
small-scale hunter-gatherer groups of as few as 35 people (Hadza). All
of the small-scale societies studied had limited access to TV, radio, and
the internet, mitigating against the influence of exposure to the music
of other societies. Four of the small-scale societies (Nyangatom,
Toposa, Sápara/Achuar, and Mbendjele) were completely without
access to these communication technologies.

Our strategy was to use the longest possible segments available.
To do so, for each speaker who produced both speech and song
samples, we used whatever duration of each was available, always
matching the durationswithin-speaker. For example, if a given speaker
produced speech for 15 s and song for 12 s, we would take the first 12 s
of the speech and compare it to the full 12 s sample for song.

Extraction of spectro-temporal modulations
For the 738 selected samples (369 speech and 369 song) we decom-
posed the acoustical signal using the framework of spectro-temporal
modulation power41. This analysis was done using the duration of the
shorter sample (song or speech) produced by the same speaker. The
modulation domain results from the 2D fast Fourier transform of the
autocorrelation matrix of the sound stimulus in its spectrographic
representation and represents the energy modulation across the
temporal and spectral axes (Fig. 1). This results in 738 STM patterns
data that were then used for univariate and multivariate analyses.

Univariate analyses
Fieldtrip42 functions as implemented in Brainstorm43 were used to
perform nonparametric permutation statistics with FDR correction
(p < 0.001) for the contrast between song and speech STM patterns.
Nonparametric tests were chosen as we did not make any assumption
about the distribution of the STM data.

Multivariate analyses
Multivariate analyses were performed using MATLAB and linear sup-
port vector machine (SVM) implementation (https://www.mathworks.
com/help/stats/fitcecoc.html). A linear classifier was chosen as STM
data contains many more features than examples, and classification of
suchdata is generally susceptible to over-fitting. Oneway of alleviating
the danger of over-fitting is to choose a simple function (such as a
linear function) for classification, where each feature affects the pre-
diction solely via its weight andwithout interactionwith other features
(rather than more complex classifiers, such as nonlinear SVMs or
artificial neural networks, which can let interactions between features
and nonlinear functions thereof drive the prediction). With small sti-
mulus sets it is typically necessary to regularize SVM analyses. The
regularization parameter (λ) serves as a degree of importance that is
given to misclassifications. SVM pose a quadratic optimization pro-
blem that looks for maximizing the margin between both classes and
minimizing the amount of misclassifications. Different values of λ will
vary the misclassification constraint: when λ tends to infinite the
solution tends to the hard-margin (allow no miss-classification). When
λ tends to 0 the more the miss-classifications are allowed. Here the
regularization parameter has been set to λ =0.01 and has been selec-
ted using a separate validation set (infant-directed song ang speech
from ref. 6, stimuli available here: https://zenodo.org/record/5525161).
We performed the same analysis as reported above using SVM classi-
fier with fieldsite-wise k-fold cross-validation to classify infant-directed
song and speech vocalization samples, using the STM as features.
Results were also expressed as accuracy of category identification that
was calculated using an average of the cross-validation folds. The
selection of λ was done as follows: on the training set, we estimate

several different models, with different values of the regularization
parameter (λ =0.1, λ = 0.05, λ = 0.01, λ =0.005, λ =0.001), then on the
validation set, we choose the bestmodel (the regularizationparameter
which gives the highest accuracy on the validation set).

Our strategywas to use the SVMclassifierwith fieldsite-wise k-fold
cross-validation to classify song and speech vocalization samples,
using the STMas features. Themodel is trainedonly ondata from20of
the 21 societies to predict whether each vocalization in the 21st society
is song or speech. The procedure is repeated 21 further times, with
each society being held out, to estimate the classification performance
across the full set of societies. Results were expressed as accuracy of
category identification that was calculated using an average of the
cross-validation folds. For each classifier, we extracted the features
weights (z-score) to evaluate the relative contribution of each feature
in the classification. This procedure was performed across societies
(21), across countries (18), language families (16), world subregions (15)
and regions (6).

Behavioral experiment
Participants. 80 adults participated in the behavioral experiment.
No statistical method was used to predetermine sample size. The
group was composed of 80 native French speakers from France
and Canada (33 female, 4 non-binary, mean age = 32.4 years ±
10.86). Some of them (10 out of 80) were musically trained (more
than 5 years of formal musical training). Six participants did not
complete the entire test and the data of 74 participants were
included in the current study. Participants reported no history of
neurological or psychiatric disease. All participants provided
written informed consent, and the experimental procedures were
approved by the Ethics Review Board of the CIUSSS de la Capitale
Nationale (2022–2476). The study has been conducted according
to the principles expressed in the Declaration of Helsinki.

Procedure. The experiments took place in a sound-attenuated
booth. Auditory stimuli were presented binaurally via Sennheiser
HD 280 pro headphones at a comfortable sound level (~75 dB
SPL). PsychoPy59 was used to control the stimulus presentation
and record responses. We played the song and speech recordings
to these individuals who were asked to rate, as rapidly as possible
on a 5-point scale on their keyboard, whether each speaker was
singing (code 1) or speaking (code - 1). Participants had 9 s to
respond and received no feedback (i.e., we did not tell them
whether or not their rating was accurate). We did not provide any
criteria to the listeners; they judged the sounds based on what-
ever they thought was relevant (hence the minimal instructions)
so as to avoid any kind of bias about what features to use, hence
providing a clean test of whether they would spontaneously use
similar features as the classifier did. The experiment lasted
approximately 15 min. We used 3 different blocks that were
pseudo-randomly presented to the participant. Each bloc con-
tained the same number of examples of speech and song for each
society, with a total of 246 trials per block. This way a given
listener was also rating the vocalization of the same speaker.
Example of this task can be found online: https://run.pavlovia.
org/palbouy/spectrotemp_bloc1.

Behavioral data analysis. Data were processed with MATLAB (The
Mathworks), and statistical analyses were performed with Jamovi
(https://www.jamovi.org). For each participant, the ratings corre-
sponding to scores in a linear scale (singing (code 1) to speaking (code
−1), see Fig. 4) were extracted and averaged for each participant
separately for each society, language family, countries, world sub-
regions and world regions. These scores were analyzed with non-
parametric tests (two-sided) and we performed Pearson’s correlation
between behavioral scores and decoding accuracy/raw spectro-
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temporal patterns that were corrected with FDR (p < 0.05) when
necessary.

Analysis of acoustical data
Acoustical analyses were done on a broad range of acoustical variables
extracted in ref. 6– and can be found here https://github.com/
themusiclab/infant-speech-song/tree/main/data. All details about the
extraction of these acoustical variables are described in the original
article. These acoustical variables are summarized in the Table S2
(table from ref. 6, used with permission).

We first aimed to investigate the link between acoustical features
and STM data. To do so performed a Partial Least Squares (PLS) ana-
lysis as implemented in MATLAB https://www.mathworks.com/help/
stats/plsregress.html using acoustical data as predictor variables and
STMdata as response variables.We used PLS instead ofmultiple linear
regression models as multicollinearity existed between several vari-
ables of the acoustical dataset. PLS analysis was done for each spectral/
temporal coordinate of the entire STMdomain across all sounds (song
and speech) resulting in one PLS model per spectral/temporal coor-
dinate. For each model we then extracted the fitted responses values
and estimated if the models could significantly fit the STM data. To do
so, we computed the correlation (FDR corrected, p < 0.05) between
the fitted responses (PLS models) and observed response (STM fea-
tures) in the entire STM domain.

To determine which acoustical variables contributed more to the
prediction, we calculated the variable importance in projection (VIP)
scores for the PLS regression models for spectral and temporal sta-
tistical peaks reported in Fig. 5A. AVIP score is ameasureof a variable’s
importance in the PLS model. In other words, it summarizes the con-
tribution a variable makes to the model. The VIP score of a variable is
calculated as a weighted sum of the squared correlations between the
PLS components and the original variable. The weights correspond to
the percentage variation explained by the PLS component in the
model. As variables with a VIP score greater than 1 are considered
important for the projection of the PLS regression model44, we report
in the main text only variables that were above this threshold. To
facilitate illustration, we grouped variables according to their labels
(see Table S2 for the corresponding labels) but present the complete
list in Figs. S4 and S5.

Moreover, to investigate whether spectro-temporal modulation
features were superior to classical acoustical features to differentiate
speech and song vocalization, we used SVM classifier with fieldsite-
wise k-fold cross-validation to classify song and speech vocalization
samples, using either (1) only the STM features, (2) STM features and
acoustical data, (3) acoustical data only or (4) acoustical data only but
without the VIP variables as input features and compared model
accuracy using nonparametric RM ANOVA (Friedman).

Finally, to investigate whether human judgments were linked to
the acoustical features we computed Pearson’s correlation between
the SVM decoding accuracy of the model using acoustical data only as
features and the normalized difference between Song and Speech
behavioral ratings computed within each society.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data generated in this study have been deposited in an OSF
database. Raw vocalizations and acoustical data are freely avail-
able at https://zenodo.org/record/5525161 and https://github.
com/themusiclab/infant-speech-song/tree/main/data6. The pro-
cessed data are available at: https://doi.org/10.17605/OSF.IO/
XCSQM60. Example of the judgment task can be found here::
https://run.pavlovia.org/palbouy/spectrotemp_bloc1.

Code availability
MATLAB codes are freely available at the following https://doi.org/10.
17605/OSF.IO/XCSQM60.
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